An analytic approach to Briançon-Skoda type theorems

نویسنده

  • JACOB SZNAJDMAN
چکیده

The Briançon-Skoda theorem can be seen as an effective version of the Hilbert Nullstellensatz and gives a connection between size conditions on holomorphic functions and ideal membership. The size conditions are captured algebraically by the notion of integral closure of ideals. Many techniques have been applied to prove the Briançon-Skoda theorem and variations of it. The first proof by Briançon and Skoda used L-theory. Later, Lipman and Tessier observed that residue calculus could be used to obtain an alternative proof, and inspired by this approach they generalized the theorem to an algebraic setting. Berenstein-Yger et al. developed further this residue method by introducing a division formula by Berndtsson into the picture. The theory of tight closure, introduced by Hochster and Huneke, was motivated by, and has been used to prove, the Briançon-Skoda theorem. This thesis explores how one can use analytic methods, including residue theory, to obtain Briançon-Skoda type theorems on singular varieties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Briançon–skoda Type Theorem for Graded Systems of Ideals

We establish a generalization of the Briançon–Skoda theorem about integral closures of ideals for graded systems of ideals satisfying a certain geometric condition.

متن کامل

Some Analytic Generalizations of the Briançon-skoda Theorem

The Briançon-Skoda theorem appears in many variations in recent literature. The common denominator is that the theorem gives a sufficient condition that implies a membership φ ∈ a, where a is an ideal of some ring R. In the analytic interpretation R is the local ring of an analytic space Z, and the condition is that |φ| ≤ C|a| holds on the space Z. The theorem thus relates the rate of vanishing...

متن کامل

Explicit Versions of the Briançon-skoda Theorem with Variations

We give new a proof of the general Briançon-Skoda theorem about ideals of holomorphic functions by means of multivariable residue calculus. The method gives new variants of this theorem for products of ideals. Moreover, we obtain a related result for the ideal generated by the the subdeterminants of a matrix-valued generically surjective holomorphic function, generalizing the duality theorem fo...

متن کامل

An Elementary Proof of the Briançon-skoda Theorem

In 1974 Briançon and Skoda, [Sko74], proved this theorem as a quite immediate consequence of Skoda’s L-theorem in [Sko72]. An algebraic proof was given by Lipman and Tessier in [Tes81]. Their paper also contains a historical summary. An account of the further development and an elementary algebraic proof of the result is found in Schoutens [Sch03]. Berenstein, Gay, Vidras and Yger [Yge93] prove...

متن کامل

Normalization of Ideals and Briançon–skoda Numbers

We establish bounds for the coefficient e1(I) of the Hilbert function of the integral closure filtration of equimultiple ideals. These values are shown to help control all algorithmic processes of normalization that make use of extensions satisfying the condition S2 of Serre.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012